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Acronyms and Abbreviations 

VIG Vacuum Insulating Glazing 

GHP  Guarded Hot Plate 

FEM Finite Element Method 

TAC Thermal Accommodation Coefficient 

Nomenclature 

A  area [m2] 

Cpa  Thermal conductance of the array of support pillars [W/(m2·K)]  

Crad  Glass surface-to-surface thermal radiation conductance [W/(m2·K)]  

Ccond  Thermal conductance of the residual low-pressure gas [W/(m2·K)]  

Cgap  Thermal conductance of the VIG gap [W/(m2·K)]  

Cpillar  The thermal conductance of the residual low-pressure gas [W/(m2·K)] 

C*  Thermal conductance of the pillars and the residual gas only [W/(m2·K)] 

D  diameter of linear bearing [m] 

f  fraction of material remaining in an annulus geometry [ - ] 

h  height of pillar [m] 

hc  Convective surface heat transfer coefficient [W/(m2·K)] 

J  Radiant heat flux leaving the surface [W/(m2·K)] 

kg  Layer conductivity [W/(m·K)] 

kglass1, kglass2 thermal conductivity of glass pane 1 and 2 [W/(m·K)]  

kpillar  thermal conductivity of the pillar material [W/(m·K)]  

K1  complete elliptical integral of the first kind [ - ] 

L  length of contact [m] 

M  Specific Molecular Weight [mol/g, or kmol/kg] 

P  Pressure of the gas [Pa] 

Rc  constriction thermal resistance [m2·K/W]   

Rs  spreading thermal resistance [m2·K/W]  

Rd  pillar conduction thermal resistance [m2·K/W]  

Ri  Thermal resistance of the air film on indoor VIG side [m2·K/W]  

Rgap  Thermal resistance of the VIG gap [m2·K/W]  
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Rglass1  Thermal resistance of glass pane 1 [m2·K/W]  

Rglass2  Thermal resistance of glass pane 3 [m2·K/W]  

Ro  Thermal resistance of the air film on outdoor VIG side [m2·K/W]  

Rp  total pillar thermal resistance [m2·K/W]  

Rpa  total pillar array thermal resistance [m2·K/W] 

r  cylindrical contact radius [m] 

r1  truncated cone side 1 contact radius [m] 

r2  truncated cone side 2 contact radius [m] 

ri  inner radius of annulus contact [m] 

ro  outer radius of annulus contact [m] 

ℜ  Universal gas constant [J/(mol·K), kJ/(kmol·K) or ] 

Sp  separation between pillars [m] 

tg  Layer thickness [m] 

T  Surface temperature [K] 

Tm  Mean temperature between surfaces 2 and 3 [K] 

qgl  Heat flux across the solid layer [W/m2] 

qi  Heat flux across the ith gap [W/m2] 

qi+1  Heat flux across the i+1th gap [W/m2] 

W  width of contact [m] 

  the accommodation coefficient of the gas interaction at the glass surfaces [ - ] 

  emissivity of the glass surface [ - ] 

  Specific heat ratio [ - ] 

ρ  Reflectance [ - ] 

  Stefan-Boltzmann Constant 5.67 x 10-8, [W/(m2·K4)] 

τ  Transmittance [ - ]  

2  surface number 2 [ - ]  

3  surface number 3 [ - ]  

f  Front surface [ - ]  

b  Back surface [ - ]  

,i  ith surface [ - ]  
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1. Introduction and Background 

Vacuum Insulated Glass (VIG), or sometimes referred to as Evacuated Glazing Units (EGU), is an 

emerging technology that was developed as a concept ~35 years ago, but only recently 

approaching widespread commercialization and acceptance. When the first prototype VIG was 

developed at the University of Sydney, it was released with the thermal model of heat transfer in 

evacuated space as a function of the pressure (vacuum level), and conduction through small 

diameter highly conducting cylindrical pillars. In recent years several companies have started 

experimenting with different pillar geometry and materials, so there was a need to update 

mathematical models for predicting the thermal performance of VIG excluding contributions from 

the edge seal (that is, the “center-of-glass” performance). In this document we present: 1) newly 

updated analytical models for predicting with large selection of pillar geometries and properties; 

and 2) also present a model for calculating thermal performance from the measured thermal 

conductivity of the VIG. When using the second model the conductance of the vacuum space, 

including pillar effects, is calculated without the need to know any details about the vacuum space 

between glazing layers. This conductance can then be used for pairing glazing layers that are 

different from the configuration of the original measured unit. 

The following figure is a schematic representation of a VIG, where the labeling of the glass layers, 

and surface numbering, are used throughout this document:    

 

Figure 1.  A schematic of the VIG, with the labeling as given, used throughout this document, as a matter of 

consistency. 

2. Thermal Conductance of the VIG Gap 

The thermal Conductance of the space between the glass panes, the vacuum gap, Cgap, is the sum of 

the conductance of the; 1. residual low-pressure gas Ccond; 2. array of glass support elements 

(pillars) Cpa; and 3. surface-to-surface radiation heat transfer between the glass surfaces in the gap 

Crad, which is written as,  

 

2 1 3 4 

tVIG 

tg1 tg2 tgap 

2r 
h 

S 
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  = + +gap cond pa radC C C C  (2.1) 

where: 

 Cgap = Combined heat conductance of VIG gap space [W/m2K] 

 Ccond = Residual low pressure gas conductance [W/m2K] 

 Cpa = Conductance of the array of support pillars [W/m2K] 

 Crad = Glass surface-to-surface radiation conductance [W/m2K] 

It will be shown later that it is useful to define a subset of thermal conductance, which is the 

combination of the residual low-pressure gas and the array of support pillars, and is labeled as C*. 

This quantity, C*, is more easily incorporated into the typical overall model of the glazing thermal 

performance calculation (Curcija et al., 2018). The fundamental definition gives, 

  * = +cond paC C C  (2.2) 

In this form, the equation is useful when calculating the overall VIG performance using 

measurement data, which is accurate since the surface-to-surface radiative calculation is the most 

accurate and well defined (see Section 4 for full details). This allows us to use this fixed quantity 

and combine with any combination of glazing layers and can serve as a validation point between 

measurements and pure calculations.  

In the following sections, the detailed analytical solutions for each of the heat flow contributions 

are outlined. In each case the validation of the analytical solution, with relevant case study results 

provided where available, are presented. 

2.1 Conductance of the Residual Low-Pressure Gas (Ccond): 

Unlike other gaseous systems, in the VIG the gap is evacuated to the point where the residual gas 

molecules will interact much more often with the glass surface than with other gas molecules 

(molecular flow regime). A solution of the conductance of heat in this molecular limit of gaseous 

surface interactions was reported by Corruccini (1959). The conductance of the residual low-

pressure gas, between two parallel surfaces, is given as,  

  

1

21

1 8




 

 +  
=      −    




condC P

M T
 (2.3) 
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  = the accommodation coefficient of the gas interaction at the inner glass surfaces 2 

and 3. This coefficient defines the relative energy-exchange efficiency of the 

interaction at the surface, and will depend on temperature, surface conditions, gas 

type, etc.  Typically, in a VIG it is expected that  and  are approximately 0.89 

each, resulting in a combined accommodation coefficient,  of approximately 0.8.  

If a conservative value is needed then a value of 1.0 could be used since it will 

result in the greatest thermal conductance contribution, where all other 

parameters are unchanged. 

 = Specific heat ratio,   1.33, for a water vapor and residual air mixture.  Table 2 

lists specific heat ratios for gas mixtures as a matter of completeness. 

ℜ = Universal gas constant, ℜ = 8,314.4626 J/(kmol·K) 

M = Specific Molecular Weight, M = 21.15 [kmol/kg], for a water vapor at typical RH 

levels and residual air mixture.  Table 3 lists specific molar weights for other gas 

mixtures as a matter of completeness. 

T = (T2 + T3)/2 [K] 

P = Pressure of the gas [Pa] 

From 1991 to 2005, several publications relating to VIG thermal conductance have been published. 

In defining the thermal conductance of the residual gas, the Corruccini (1959) work is 

fundamental. Equation (2.4) is a corrected, practical formulation, that applies the kinetic theory of 

gases to defined better the gaseous conductance between two surfaces as a function of pressure, 

temperature, molecular mass, and an energy exchange efficiency factor known as the 

accommodation coefficient. In its practical use, it is important to note that in Equation (2.4), T is 

not a simple average of the two boundary temperatures but an effective value derived from the 

kinetic energy distribution of gas molecules in a nonequilibrium state, and P the gas pressure must 

be interpreted at the location of thermal interaction, and not necessarily from a gauge at some 

other remote location in the vacuum system. 

A significant contribution in Equation (2.4) is the Thermal Accommodation Coefficient (TAC), , 

which quantifies the efficiency with which a gas molecule exchanges energy with a surface. The 

TAC is a fundamental quantity that represents critical factors affecting the conductance 

contribution due to the residual gas. The TAC quantifies the collision efficiency of gaseous 

molecular energy exchange with a solid surface. When a gas molecule strikes the surface, it may 

rebound retaining most of its original energy (specular reflection) or it can equilibrate to the 

temperature of the surface before re-emitting (diffuse reflection). The value of α ranges from 0 

(purely specular) to 1 (perfectly diffuse), and it critically affects the value of gaseous heat transfer 

in the free molecular regime. 

The fundamental physics of α is governed by kinetic gas theory, with α being a function of the 

incident and reflected energy distributions. The process of energy transfer, in particular, of free 

molecules between plane parallel surfaces, is strongly influenced by several factors: 

1. Temperature: α generally increases at lower temperatures, as slower-moving molecules 

interact longer with the surface, allowing more energy exchange. 
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2. Surface condition: Rougher or contaminated surfaces (e.g., with water vapor or 

hydrocarbons) enhance adsorption and scattering, increasing α. In particular, roughness 

results in an increased number of gas-wall collisions and their angular variation. 

3. Gas species: Lighter gases like He tend to have lower α values due to low polarizability and 

fast speeds, while heavier gases such as N₂ and Ar achieve higher accommodation. 

4. Material composition: The thermal properties of the surface (e.g., SiO₂) affect how energy 

is absorbed and transferred back, which is attributed to physical adsorption effects. 

5. Adsorbed layers: Even a single monolayer of adsorbed gas (e.g., water) can significantly 

increase α, by up to ±20%, due to enhanced interaction time and variability in scattering 

behavior. 

In reported works, α, for Ar and N₂ on dense CaSiO₃ and SiO₂ material (similar surface types to 

float glass) was found to be close to 1 at room temperature, while α for He was found to be ~0.3. 

Determining correct estimates of α is essential in a VIG system because the residual gas conduction 

is a key thermal contribution. If α is not reasonably defined, the design of thermal performance can 

lead to under- or over-predicted overall thermal conductance. Moreover, an accurate analysis of 

the measured thermal conductance of a VIG is made difficult, where issues of vacuum instability 

due to outgassing, or undesirable issues of low emissivity changes, cannot be defined. 

To illustrate the importance of gas composition, Table 1 shows the effective molar mass and 

specific heat of air across different humidity levels. Table 2 summarizes reported estimates of the 

TAC on glasseous surfaces. 

Table 1. Effective Molar Mass and Specific Heat Ratio of Air at 25°C 

Relative Humidity (%) Molar Mass (kg/kmol) Specific Heat Ratio (-) 

0 (dry air) 28.97 1.402 

20 26.77 1.386 

50 23.49 1.364 

80 20.19 1.342 

99 (saturated) 18.12 1.327 

 

Table 2. Reported Thermal Accommodation Coefficients (α) on Glasseous Surfaces 

Gas Surface Condition α (Range) 

Helium Clean glass 0.01 – 0.3 

Air Standard glass (room temp) 0.8 – 1.0 

Argon Contaminated glass 0.7 – 0.9 

Nitrogen Smooth, clean glass 0.4 – 0.7 

Water vapor Humid glass 0.6 – 1.0 

 

2.2 Thermal Conductance of Support Elements: The Pillar Array (Cpa) 
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The gap between the glass panes in a VIG is maintained through a regular array of sub-millimeter 

sized support elements, commonly known as pillars.  Typically, the pillars are cylindrical in shape 

and are a thermal bridge between the panes, and thus, the heat transfer through the pillars needs 

to be accounted for. 

Typically, the cylindrical pillar is in the range of 0.3-0.5 mm in diameter and 0.1-0.2 mm in height, 

and are spaced 20-50 mm apart, in the form of a square or staggered array. In the following 

sections the analytical equations for the thermal resistance of a single pillar, for a variety of 

geometries, as well as for different pillar array geometries, are presented with validation. 

While thermal conductance (C) is directly proportional to the overall heat transfer in a VIG, we will 

be discussing the inverse of thermal conductance, which is the thermal resistance, R. Conductance 

of the pillar array, Cpa is therefore: 

 
1

pa

pa

C
R

=  

Where: 

 2

pa p pR S R=    (2.5) 

 Rpa = Thermal resistance of the pillar array [m2∙K/W]  

Where: 

Sp  = Separation between pillars in a pillar array [m] 

Rp = Thermal resistance of a single pillar [m2∙K/W] 

 

The thermal resistance associated with each pillar is a combination of three independent 

processes, 

1. Constriction resistance [Rc]: resistance to heat flow from the glass into the pillar, a pillar-

to-glass size effect, which would be the cold side or surface 2 of the glass panes, 

2. Spreading resistance [Rs]: resistance to heat flow from the pillar into the glass, a pillar-to-

glass size effect, which would be the hot side or surface 3 of the glass panes, and  

3. The 1-Dimensional conductive heat flow resistance [Rd] through the pillar, which is 

related to the material used to make the pillar. 

The total resistance to heat flow of a single pillar, Rp, is obtained by combining in series the 

constriction, spreading, and conductive resistances:  

 p c s dR R R R= + +
  (2.6) 

Figure 2 is a simple illustration of the heat flow into and out of a contact interface between two 

semi-infinite surfaces. Here, the volumetric heat source is constrained as it flows into the interface 

and then spread out to fill the sink volume. The spreading/constriction resistance is directly 
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related to the difference in the temperature field between the source and the sink, with respect to 

the total heat flow into and out of the source. Numerous publications report solutions for various 

cases (McGee et al. 1985, McWaid and Marshall 1992, Yovanovich 1975, and Yovanovich and 

Michael 1967). In the case of pillars in a VIG the actual heat source is not at the contact, which 

results in a uniform temperature field at the contact, and a spatially varying heat flux over the 

contact surface. This is the defined isothermal heat flow case for an isotropic half space.  

The simplest pillar configuration to consider is a cylindrical disc shape, with a finite thickness. The 

heat flow through such a pillar, within an array, is considered to be independent of any other pillar, 

which means that the separation between pillars, also known as the pillar spacing, is much larger 

than the pillar size. A closed form analytical solution for the constriction (and equally the 

spreading) resistance of a single cylindrical contact is, 

 
1

4
c

glass

R
k r

=


  (2.7) 

where r is the radius of the pillar and kglass is the thermal conductivity of the glass. This solution is 

well documented and has been validated through measurements (Wilson et al. 1998). Since the 

contact geometry of a cylinder is the same on either end, clearly the constriction and spreading 

resistance should be equal: Rc = Rs. Where the contact geometry is not the same, the 

constriction/spreading resistance would be solved for the specific contact geometry. 

In addition to the resistance of heat flow into and out of the pillar, there is the resistance to heat 

flow because of the material that the pillar is made from. This is simply the resistance to heat flow 

due to the conductivity, and volume, of the pillar material, which is simply given as,  

 d

pillar

h
R

k A
=


 (2.8) 

where 𝐴 = 𝜋𝑟2 is the cross-sectional area of the cylindrical pillar, h is the height of the pillar, and 

kpillar is the thermal conductivity of the pillar. Therefore, the total resistance to heat flow for a 

cylindrical pillar is, assuming the contact area on the glass surfaces is equal and that the thermal 

conductivity of each glass pane is different, 

 

1 2

2

1 1

4 4glass glass pillar

pR
h

k r k rk r 
+=

   
+   (2.9) 
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Figure 2. An illustration that highlights the constriction and spreading of heat flow isotherms through the 
source contact and the sink volume. 

It is interesting to note that the constriction/spreading resistance, by definition, includes the 

thermal resistance of the glass. However, the conductivity term does not. The error that results 

because the glass contribution is not included in each term is small and considered to be negligible 

in all cases to be discussed in the following sections. The results from the equation for Rp are found 

to be in good agreement with guarded hot plate (GHP) measurements and finite element method 

(FEM) simulations: see Figure 3. 

 

Figure 3. Plot of the thermal conductance, as a function of pillar material thermal conductivity, from the 

analytical solution, Equation (2.9), and compared to GHP measurements and FEM simulations. The solutions 

in this plot are for a pillar array separation of 20 mm, the glass thermal conductivity is taken to be 1 W/(m∙K), 

and the pillar is 0.5 mm in diameter and 0.2 mm in height.    

2.2.1 Thermal resistance of various pillar geometries 

There are various geometric options for the pillar. Each geometry results in a different thermal 

resistance contribution. In the following sections the analytical solutions for the thermal resistance 

of the most common pillar geometries are presented. 

Half space
(Sink)

Contact Area
(Source)
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The analytical results presented were validated through direct comparisons to the results obtained 

from numerical simulations and measurements. The numerical simulations were performed using 

a finite element modelling platform. In all simulations the solver type and mesh density were 

determined to provide convergence in the solution. To perform direct measurements, a small VIG 

sample, which was actively pumped (to ensure residual gas effects were negligible), was 

constructed with the desired pillars. Using a small area GHP, the heat flow through a single pillar 

was measured. Complete details of the simulation and measurement methods are not provided 

here as a matter of brevity and will be provided in follow-up reports, as required. 

It is important to note that the thermal resistance of a contact does not change whether the contact 

is on surface 2 or 3 of the glass panes. Nevertheless, it is important to orientate the surfaces with 

respect to surface 2 and 3, since the thermal conductivity of the glass panes could be unequal. 

Therefore, the relevant terms of the analytical solutions are labelled with respect to the thermal 

conductivity of glass pane 1 (outdoor-faced) and 2 (indoor-faced). 

2.2.1.1 Regular Polygon Geometries 

The most common pillar geometry is the cylindrical disc shape. The well-known analytical solution 

for this geometry was given in Equation (2.9). The cylindrical case can be categorized along with 

the set of regular polygons, as illustrated in Figure 4. This means that the thermal resistance of 

each geometry can be related with little error by using the normalizing factor 𝑘𝑔𝑙𝑎𝑠𝑠√𝐴, where A is 

the area of contact (note – in all cases given below data are for a VIG unit where the glass panes are 

of identical physical and thermal properties). If we plot the total thermal resistance, Rp, as in Figure 

5, the results of different geometries show good agreement. 

 

Figure 4: Illustrations of the contact area for a cylinder, sphere, and various regular polygons. 
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Figure 5: Plot of the total thermal resistance, Rp, as a function of the normalizing factor kglass∙√A from FEM 

simulations. The solutions in this plot are for a single pillar, where the pillar thermal conductivity is 15 

W/(m∙K), the glass thermal conductivity is 1 W/(m∙K), and the reference cylindrical pillar is 0.5 mm in 

diameter and 0.2 mm in height. Other geometries were calculated for a similar overall size  

This means that for the various geometries, as illustrated in Figure 4, the total thermal resistance, 

which includes constriction, spreading, and conduction contributions, can be given as: 

 

1 2
4 4

p

pillarglass glass

h
R

k Ak A k A

 
= + +

   
 (2.10) 

where A is the area of contact, of the pillar geometry to the glass surface. In all practical cases, the 

contact area of the pillar will need to be determined through a direct visual measurement of pillars 

in a ‘real’ VIG unit. The actual contact area not only depends on the pillar geometry but also the 

deformation of the pillar which results from atmospheric pressure and the effects of the 

production process. The area of contact for the geometries illustrated in Figure 4 can be written as: 

1. Cylindrical: A = π∙r2 

2. Sphere: A = π∙r2 

3. Rectangular: A = L∙W 

4. Triangle: 23

4
= A L  

5. Multisided: 
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a. Pentagon: 25 3

4


= A r  

b. Hexagon: 23 3

4


= A r  

2.2.1.2 Linear bearing: the Elliptic Integral Solution 

The linear bearing pillar is a cylinder, where its length is greater than its diameter, contacting the 

glass surface over its length: see Figure 6. This results in a rectangular contact area on the glass, 

where the final size depends highly on the undeformed size of the cylinder and the load applied to 

it. As mentioned in the previous section, in practical VIG units the user will need to measure 

directly the contact area of the pillar, since determining the contact area using an analytical 

solution will require knowledge of material and design parameters, which are not practical to 

obtain for commercial VIG products. 

For a known rectangular contact area, various independent analytical solutions have been 

proposed. In this work the solution of the contact thermal resistance is obtained by using the 

known geometric functions of an Ellipse geometry. This solution was found to provide better 

results over a wider range of contact sizes. The detailed step-by-step formulation is not provided 

here, as a matter of brevity. The solution for the constriction and spreading resistance is found to 

be: 

1 2

1 1

1 2 1 2
;

4 4
C S

glass glass

R K R K
k L k L 

   
= =   

      
 

where the main function of the Elliptic integral of the first kind is 

4

1 4

2 2
1

4

n
K

m m

  
= −   

 

1
W W

m
L L

 
= +  

 
 

1
W

n
L

= +  

where L is the length and W is the width of the rectangle contact area. The conductive heat flow 

resistance is:  

d

pillar W

D
R

k L
=

 
 

As mentioned previously, for pillars with symmetric contact, that is the same contact area on both 

top and bottom glass sheets, the constriction and spreading resistance is equal. In addition, as the 

heat flow enters the pillar material, spreading of the heat is negligible since the pillar height, in this 

case the diameter of the cylinder, is small. This means that the 1-dimensional conduction of heat 
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through this pillar can be calculated based on a rectangular volume of material. Therefore, the total 

thermal resistance associated with a single linear bearing pillar is: 

 

1 1

1 1

1 2 1 2

4 4 pig llar

P

glass lass

R
D

K K
k L k L Wk L 

   
= + +   

        
 (2.11) 

 

 

Figure 6: Illustration of the rectangular contact area obtained for a linear bearing pillar geometry  

GHP measurements were performed on a limited range of sizes of the linear bearing pillar. Figure 7 

is a plot of the analytic solution, simulation and GHP measurements for a linear bearing pillar. The 

data are labelled to highlight fixed lengths, L, since there are cases where the ratio L/W is equal for 

different lengths of linear bearing. Clearly, the calculated, simulated and measured data are in good 

agreement. 

 

Figure 7: A plot of the linear bearing thermal resistance, as a function of the contact area length/width ratio. 

The solutions in this plot are for a single pillar, where the pillar thermal conductivity is 15 W/(m∙K), the glass 

thermal conductivity is 1 W/(m∙K), and the diameter of the pillar is 0.1 mm. 

Linear Bearing
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The ellipse solution proposed here is for a rectangular contact area, which should cover the 

expected solution for a rectangular pillar geometry. These solutions, however, do diverge for an 

L/W ratio that is large.  

Figure 9 is a plot of the thermal spreading resistance of the ellipse and rectangular solutions, and 

highlights the percentage difference between the solutions (on the right Y-axis). For a percentage 

difference of 1.8% or less, the ratio of L/W should be less than 2.  

This means that for a rectangular pillar geometry the following solutions should be used, 

1. For L/W < 2, Equation (2.10) 

2. For L/W  2, Equation (2.11) 

 

 

Figure 8: A plot of the thermal spreading resistance from the Ellipse and rectangular solutions (left Y-axis), with a 

plot of the percentage difference between the two solutions (right Y-axis), as a function of the contact area aspect 

ratio L/W. The pillar parameters used in this plot were the same as that given in the caption of Figure 7. 

2.2.1.3 Truncated Cone 

When a material deposition process of ‘printing’ is used to form a pillar feature on the glass 

surface, using glass or ceramic paste, the typical shape formed closely resembles a truncated cone: 

see Figure 9. In this case the contact of this geometry is asymmetric with the contact areas on the 

top and bottom glass not the same. The 1-Dimensional conduction resistance is specifically 

determined for the truncated cone for the spreading of heat within the pillar. The total thermal 

resistance of the truncated pillar is given in Equation (2.12), and  Figure 10 shows the comparison 

to simulated and measured results, where the data are in good agreement. The plots are for 

normalized conductance, which is obtained using the normalizing factor (𝑘𝑔𝑙𝑎𝑠𝑠√𝐴).  
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Figure 9: Illustration of the contact area for a truncated cone pillar geometry. 

 

 

Figure 10: A plot of the normalized thermal conductance, as a function of the ratio of the top and bottom 

radii. The data are from the analytical solution, FEM simulations and GHP measurements. The solutions in 

this plot are for a single pillar, where the pillar thermal conductivity is 15 W/(m∙K), the glass thermal 

conductivity is 1 W/(m∙K), and the height of the pillar is 0.2 mm. 

2.2.1.4 Annulus Cylindrical 

Annulus shaped pillars, as shown in Figure 11, have been proposed in the past because of the 

potential to increase thermal resistance by reducing the contact area for heat flow. However, the 

heat flow through this pillar is not linearly related to the contact area. Therefore, a single solution 

for this case could not be found. Rather, two solutions valid over two independent ranges of size 

were formulated. The constriction resistance solutions are given as 

Truncated Cone

r1

r2

h
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Where: i

o

r

r
 =  

Note - here the labels C & S correspond to the glass pane labels 1 & 2, respectively, for the 

contribution of Constriction and Spreading 

Since the contact area of the top and bottom surfaces are equal, conductive heat flow resistance is: 

=


d

pillar

h
R

k A
 

Where: ( )2 2=  −o iA r r  

Therefore, the total contact thermal resistance for the annulus pillar is, for the relevant range: 

 = + +p c s dR R R R   (2.15) 

Figure 12 is a plot of the normalized thermal conductance, and the data are in good agreement: the 

data here are presented normalized as a matter of producing a plot to highlight the features of the 

data sets. The plots in Figure 12 are for normalized conductance, which is obtained using the 

normalizing factor kglass∙√A . 
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Figure 11: Illustration of the contact area of an annulus pillar geometry. 

 

 

Figure 12: A plot of the normalized thermal conductance, as a function of the ratio of outside and inside 

radii. The data are from the analytical solution, FEM simulations and GHP measurements. The solutions in 

this plot are for a single pillar, where the pillar thermal conductivity is 15 W/(m∙K), the glass thermal 

conductivity is 1 W/(m∙K), and the height of the pillar is 0.2 mm. 

2.2.1.5 C-shaped cylindrical 

A well-known variation of the standard annulus cylindrical pillar is the C-shaped pillar, which is 

simply the former pillar geometry with a section, or fraction, of the material removed. This C-

shaped geometry is illustrated in Figure 13, with the parameters that define the geometry 

highlighted.  

 

Figure 13: Illustration of the contact area of a C-shaped cylindrical pillar geometry. 
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The heat flow through this geometry is well described by a weighted solution of the full annulus 

pillar geometry, as given in Equation (2.15). Starting with the original annulus solution, and adding 

a factor representing the fraction of material remaining, as highlighted in Figure 13, the total 

thermal resistance, with respect to the original annulus solution, is written as,  

 
1 annulus annulus

p c s

pillaro

h
R R R

k AC

 
= + +   

  (2.16) 

 

Where: 

( )2 2

o iA r r f=  −    

0.94oC f=   

f = fraction (between 0 and 1) of material remaining. 

This analytical solution, when compared to a full 3D finite element simulations results in a 

maximum difference of approximately 10% at the extremes of the practical range of pillar 

geometries expected. The comparison of these results is shown in Figure 14. 

 

 

Figure 14: A plot of the normalized thermal conductance, as a function of the ratio of outside and inside 

radii, multiplied by the factor, f, which is the percentage of material remaining. The data are from the 

analytical solution, FEM simulations and a GHP measurement. The solutions in this plot are for a single pillar, 

where the pillar thermal conductivity is 15 W/(m∙K), the glass thermal conductivity is 1 W/(m∙K), and the 

height of the pillar is 0.2 mm. 
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2.3 Thermal Resistance of the Pillar Array 

In the previous sections, the thermal resistance Rp was presented for various pillar geometries of 

practical interest, where the resistance is for a single pillar. In the case of a glazing/window it is the 

total thermal conductance of all the pillars that is of interest: that is, the thermal conductance of 

the pillar array. The thermal resistance of an individual pillar is associated with the unit cell of 

glass area. Figure 15a illustrates a typical square array, emphasizing the square-shaped unit cell of 

glass that covers each pillar.  

In general, we define the unit cell as the area of glass where the heat flow reaches a net-zero point 

at the boundaries of the unit cell, effectively cancelling out the heat flow between adjacent pillars. 

Therefore, for a square array of pillars the thermal resistance of the pillar array, Rpa is given as, 

 
2= pa p pR S R   (2.17) 

where Sp is the separation between pillars in a square array.  

However, practical VIG units employ various array geometries. In Figure 15, we illustrate the 

current practical and available array geometries, which are (a) square, (b) shifted square, and (c) 

shifted-rotated square configurations. These diverse geometries serve as design options to 

minimize the number of pillars in the VIG construction. In Figure 15 (b) and (c), we highlight the 

actual unit cell boundaries in green. It's evident that in these cases, the unit cell is not square, but is 

rather regular hexagonal in shape. To determine the unit cell shape in a VIG, the process involves 

identifying the net-zero heat flow boundaries between pillars. These boundaries represent 

surfaces across which the heat flow is balanced, resulting in no net heat transfer. To determine the 

net-zero heat flow surfaces, factors such as the arrangement of the pillars and the spacing between 

them must be observable over the glass panes.  

In general, for all potential pillar array geometries, the total thermal resistance is calculable if the 

unit cell area is measurable, which means that 

 pa pR A R=    (2.18) 

where A is area of glass over the unit cell. In general, for VIG products, the unit cell, and the area 

associated with the unit cell, should be determined through direct observation of the pillar array of 

the product, which is also the case when considering the pillar shape and size.   

This means that there are three options in selecting the pillar array geometry; 

1. The array geometry matches directly one of the three options of geometry highlighted in 

Figure 15, 

2. The user has identified a unit cell configuration which is uniform over each pillar in the VIG 

unit, and has determined a unit cell area in the units of per m2 or ft2, 

3. The user has identified a unit cell configuration which is uniform over each pillar in the VIG 

unit, and has determined the number of pillars in the VIG unit per m2 or ft2. 
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Figure 15: An illustration of pillar arrays, (a) square, (b) shifted square, and (c) shifted-rotated square, 

which are typical array types found in practical VIG units. 

It is reasonable to expect that some VIG designs could use a non-uniform pillar application over the 

surface of the glass. This is the same as a pillar unit cell shape, or area, that is not equal for each 

pillar in the VIG. In such a case the solution of thermal conductance due to the pillars cannot be 

solved analytically. The user must use a more detailed numerical method to simulate the whole VIG 

design, to determine accurately the thermal conductance contribution. Alternatively, use the 

measured conductance to determine conductance of the gas and pillar array (C*), detailed in 

Section 4. 

2.3.1 Thermal Conductance of surface-to-surface Radiation (Crad)  

A significant contribution to the overall thermal conductance of a VIG is the surface-to-surface 

radiation over the internal gap, between surface 2 and 3. Radiative conductance between two 

parallel plates is given by, 

 
( )4 4

3 2

3 2

 
−

=  
−

rad eff

T T
C

T T
 (2.19) 

where: 

2 3

1

1 1
1



 

=

+ −
eff

 

and where: 

 eff = effective emissivity of surfaces 2 and 3 (infinite parallel plates), [ - ] 

2 = emissivity of the first facing glass surface, surface 2, [ - ] 

 3 = emissivity of the second facing glass surface, surface 3, [ - ] 

  = Stefan-Boltzmann Constant, 5.67 x 10-8, [W/(m2·K4)] 

 T2 = Temperature of the first facing glass surface, surface 2, [K] 

Sp

Sp

Sp

Sp
Sp Sp

r

r
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 T3 = Temperature of the second facing glass surface, surface 3. [K] 

 

Equation (2.19) is a precise formulation for two parallel plates at constant temperature, 

nevertheless, it can be simplified to use the average temperature between the glass panes, 

 34  =   rad eff mC T  (2.20) 

where Tm is the mean temperature between surface 2 and 3, [K]  

2 3

2

+
=m

T T
T  

3. The total center-of-glass, air-to-air, U-factor of the VIG (UVIG) 

The U-Factor of the VIG, UVIG, is air-to-air thermal transmittance. It includes surface heat transfer 

coefficients at the indoor and outdoor glazing surfaces – surfaces 1 and 4. and is calculated 

similarly to the standard method used for a conventional IGU, except that in a conventional IGU the 

gap conductance is calculated from the set of equations for natural convection of a gas-fill  (e.g., Air, 

Argon, Krypton) in rectangular tall cavity, hc,i and surface-to-surface radiation consisting of radiant 

heat fluxes (i.e. radiosities) leaving the front and back facing glass surfaces, Jf,i and Jb,i . In terms of 

these variables the heat flux across the ith gap (i.e. qi) is: 

 ( )1 1− −=  − + −i c,i f,i b,i f,i b,iq h T T J J  

For VIG units, convection/conduction heat transfer in the gap needs to be replaced by C*. as 

follows: 

 *

, =c i ih C   

So, for VIG, the following is the expression for heat flux: 

 ( )*

1 1− −=  − + −i f,i b,i f,i b,iq C T T J J  (3.1) 

The rest of the model and full system of equations for the N glazing layers is described in WINDOW 

Technical Documentation (Curcija et al. 2018) 

3.1 Simplified VIG U-Factor Calculation 

Simplified model, convenient for quick calculations of the thermal transmittance of double-glazing, 

is given below. 

 

1 2

1 1
= =

+ + + +tot o glass gap glass i

U
R R R R R R

 (3.2) 
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1

=gap

gap

R
C

 (3.3) 

For VIG, Cgap is calculated according to equation (2.1). 

 =
glass

glass

glass

t
R

k
 (3.4) 

Where: 

 tglass = glass thickness [m] 

 kglass = glass conductivity [W/(m·K)] 

Ro = Outdoor surface heat transfer resistance, calculated using ISO (2007) [m2K/W].  

Ri = Indoor surface heat transfer resistance, calculated using ISO (2007) [m2K/W]. 

Note: For NFRC boundary conditions, approximate values for Ro and Ri are Ro ≈ 0.034 m2K/W and 

Ri ≈ 0.147 m2K/W  

4.  Calculation of Thermal Transmittance from Measured Data 
(C*) 

When details of gap space pressure and/or pillars are not known or are uncertain the conductance 

of the pillars and the residual gas only, or conductance of the gap space without the surface-to-

surface radiation contribution, C* can be calculated using the measured conductivity of the VIG, kVIG 

(e.g., ASTM 2021).  

 
1

* = − rad

gap

C C
R

 (4.1) 

Where:  

Rgap is derived from the measured conductivity kVIG, VIG overall thickness tVIG, and thicknesses and 

conductivities of each glass layer, tg1, kg1, tg2, kg2.  

 ( )1 2gap VIG glass glassR R R R= − +  (4.2) 

Where: 

1
=VIG

VIG
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= VIG
VIG
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t
  

Therefore: 
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Substituting RVIG and Rg1, Rg2 into Equation (4.2), Rgap becomes: 
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1 2

glass glassVIG
gap

VIG glass glass

t tt
R

k k k

 
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 

 (4.3) 

Substituting equation (4.3) for Rgap and equation (2.19) for Crad into equation (4.1), the following 

equation is obtained for calculating C*: 
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 (4.4) 

Where temperatures T2 and T3 are calculated from the measured heat flux and known 

temperatures T1, and T4, which are surface temperatures applied at the cold and hot plates during 

the measurement. The following equalities assume that the heat flow into surface 4 is equal to the 

heat flow out of surface 1 (1-D heat flow assumption), where the heat flux is measured and 

expressed in terms of kVIG, tVIG and temperature differential (T4 – T1): 

( )1 4 4 1= = =  −VIG

VIG

k
q q q T T

t
 

At the same time, q1 and q4 can be expressed as heat transfer across the glass layers (again, 

utilizing 1-D heat flow assumption): 

( )1 1

1 2 1 2 1 1

1 1

=  −  =  +
g g

g g

k t
q T T T q T

t k
 

( )2 2

4 4 3 3 4 2
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=  −  = − 
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q T T T T q
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Therefore: 
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2 4 1 1
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glass VIG

t k
T T T T

k t
=   − +  (4.5) 
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 ( )2

3 4 4 1

2

glass VIG

glass VIG

t k
T T T T

k t
= −   −  (4.6) 

This equation works only if glass 1 and glass 2 have thermal IR transmittance equal to zero. For 

non-zero IR transmittance, this model is not applicable. 
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